This non-implication, 
	Form 97 \( \not \Rightarrow \)
	Form 168, 
	 whose code is 4,  is constructed around a proven non-implication as follows:
	
| Hypothesis | Statement | 
|---|---|
| Form 97 | <p> <strong>Cardinal Representatives:</strong> For every set \(A\) there is a function \(c\) with domain \({\cal P}(A)\) such that for all \(x, y\in {\cal P}(A)\), (i) \(c(x) = c(y) \leftrightarrow x\approx y\) and (ii) \(c(x)\approx x\). <a href="/books/8">Jech [1973b]</a> p 154. </p> | 
| Conclusion | Statement | 
|---|---|
| Form 328 | <p> \(MC(WO,\infty)\): For every well ordered set \(X\) such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that and for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). (See <a href="/form-classes/howard-rubin-67">Form 67</a>.) </p> | 
The conclusion Form 97 \( \not \Rightarrow \) Form 168 then follows.
	Finally, the 
	  List of models where hypothesis is true and the conclusion is false:
	  	
| Name | Statement | 
|---|---|
| \(\cal M1(\langle\omega_1\rangle)\) Cohen/Pincus Model | Pincus extends the methods of Cohen and adds a generic \(\omega_1\)-sequence, \(\langle I_{\alpha}: \alpha\in\omega_1\rangle\), of denumerable sets, where \(I_0\) is a denumerable set of generic reals, each \(I_{\alpha+1}\) is a generic set of enumerations of \(I_{\alpha}\), and for a limit ordinal \(\lambda\),\(I_{\lambda}\) is a generic set of choice functions for \(\{I_{\alpha}:\alpha \le \lambda\}\) |