This non-implication, Form 97 \( \not \Rightarrow \) Form 264, whose code is 4, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 3. In this case, it's Code 3: 938, Form 97 \( \not \Rightarrow \) Form 91 whose summary information is:
    Hypothesis Statement
    Form 97 <p> <strong>Cardinal Representatives:</strong> For every set \(A\) there is a function \(c\) with domain \({\cal P}(A)\) such that for all \(x, y\in {\cal P}(A)\), (i) \(c(x) = c(y) \leftrightarrow x\approx y\) and (ii) \(c(x)\approx x\).  <a href="/books/8">Jech [1973b]</a> p 154. </p>

    Conclusion Statement
    Form 91 <p> \(PW\):  The power set of a well ordered set can be well ordered. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 7848, whose string of implications is:
    264 \(\Rightarrow\) 202 \(\Rightarrow\) 91

The conclusion Form 97 \( \not \Rightarrow \) Form 264 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1(\langle\omega_1\rangle)\) Cohen/Pincus Model Pincus extends the methods of Cohen and adds a generic \(\omega_1\)-sequence, \(\langle I_{\alpha}: \alpha\in\omega_1\rangle\), of denumerable sets, where \(I_0\) is a denumerable set of generic reals, each \(I_{\alpha+1}\) is a generic set of enumerations of \(I_{\alpha}\), and for a limit ordinal \(\lambda\),\(I_{\lambda}\) is a generic set of choice functions for \(\{I_{\alpha}:\alpha \le \lambda\}\)

Edit | Back