This non-implication,
Form 369 \( \not \Rightarrow \)
Form 30,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 369 | <p> If \(\Bbb R\) is partitioned into two sets, at least one of them has cardinality \(2^{\aleph_0}\). </p> |
Conclusion | Statement |
---|---|
Form 93 | <p> There is a non-measurable subset of \({\Bbb R}\). </p> |
The conclusion Form 369 \( \not \Rightarrow \) Form 30 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M5(\aleph)\) Solovay's Model | An inaccessible cardinal \(\aleph\) is collapsed to \(\aleph_1\) in the outer model and then \(\cal M5(\aleph)\) is the smallest model containing the ordinals and \(\Bbb R\) |