This non-implication, Form 390 \( \not \Rightarrow \) Form 85, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 10278, whose string of implications is:
    64 \(\Rightarrow\) 390
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1216, Form 64 \( \not \Rightarrow \) Form 285 whose summary information is:
    Hypothesis Statement
    Form 64 <p> \(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.) </p>

    Conclusion Statement
    Form 285 <p> Let \(E\) be a set and \(f: E\to E\), then \(f\) has a fixed point if and only if \(E\) is not the union of three mutually disjoint sets \(E_1\), \(E_2\) and \(E_3\) such that \(E_i \cap f(E_i) = \emptyset\) for \(i=1, 2, 3\). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 4791, whose string of implications is:
    85 \(\Rightarrow\) 62 \(\Rightarrow\) 285

The conclusion Form 390 \( \not \Rightarrow \) Form 85 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N22(p)\) Makowski/Wi\'sniewski/Mostowski Model (Where \(p\) is aprime) Let \(A=\bigcup\{A_i: i\in\omega\}\) where The \(A_i\)'s are pairwisedisjoint and each has cardinality \(p\)

Edit | Back