This non-implication,
Form 104 \( \not \Rightarrow \)
Form 344,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 44 | <p> \(DC(\aleph _{1})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y| < \aleph_{1}\) there is an \(x \in X\) with \(Y \mathrel R x\), then there is a function \(f: \aleph_{1} \rightarrow X\) such that \((\forall\beta < \aleph_{1}) (\{f(\gamma ): \gamma < b \} \mathrel R f(\beta))\). </p> |
Conclusion | Statement |
---|---|
Form 327 | <p> \(KW(WO,<\aleph_0)\), <strong>The Kinna-Wagner Selection Principle for a well ordered family of finite sets:</strong> For every well ordered set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See <a href="/form-classes/howard-rubin-15">Form 15</a>.) </p> |
The conclusion Form 104 \( \not \Rightarrow \) Form 344 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N2(\aleph_{\alpha})\) Jech's Model | This is an extension of \(\cal N2\) in which \(A=\{a_{\gamma} : \gamma\in\omega_{\alpha}\}\); \(B\) is the corresponding set of \(\aleph_{\alpha}\) pairs of elements of \(A\); \(\cal G\)is the group of all permutations on \(A\) that leave \(B\) point-wise fixed;and \(S\) is the set of all subsets of \(A\) of cardinality less than\(\aleph_{\alpha}\) |