This non-implication,
Form 412 \( \not \Rightarrow \)
Form 173,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 43 | <p> \(DC(\omega)\) (DC), <strong>Principle of Dependent Choices:</strong> If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See <a href="/articles/Tarski-1948">Tarski [1948]</a>, p 96, <a href="/articles/Levy-1964">Levy [1964]</a>, p. 136. </p> |
Conclusion | Statement |
---|---|
Form 173 | <p> \(MPL\): Metric spaces are para-Lindelöf. </p> |
The conclusion Form 412 \( \not \Rightarrow \) Form 173 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N57\) The set of atoms \(A=\cup\{A_{n}:n\in\aleph_{1}\}\), where\(A_{n}=\{a_{nx}:x\in B(0,1)\}\) and \(B(0,1)\) is the set of points on theunit circle centered at 0 | The group of permutations \(\cal{G}\) is thegroup of all permutations on \(A\) which rotate the \(A_{n}\)'s by an angle\(\theta_{n}\in\Bbb{R}\) and supports are countable |