This non-implication,
Form 412 \( \not \Rightarrow \)
Form 253,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 87-alpha | <p> \(DC(\aleph_{\alpha})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y|<\aleph_{\alpha}\), there is an \(x\in X\) with \(Y\mathrel R x\) then there is a function \(f:\aleph_{\alpha}\to X\) such that (\(\forall\beta < \aleph_{\alpha}\)) \(\{f(\gamma): \gamma < \beta\}\mathrel R f(\beta)\). </p> |
Conclusion | Statement |
---|---|
Form 253 | <p> <strong>\L o\'s' Theorem:</strong> If \(M=\langle A,R_j\rangle_{j\in J}\) is a relational system, \(X\) any set and \({\cal F}\) an ultrafilter in \({\cal P}(X)\), then \(M\) and \(M^{X}/{\cal F}\) are elementarily equivalent. </p> |
The conclusion Form 412 \( \not \Rightarrow \) Form 253 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M40(\kappa)\) Pincus' Model IV | The ground model \(\cal M\), is a model of \(ZF +\) the class form of \(AC\) |