This non-implication, Form 106 \( \not \Rightarrow \) Form 256, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 3325, whose string of implications is:
    40 \(\Rightarrow\) 43 \(\Rightarrow\) 106
  • A proven non-implication whose code is 3. In this case, it's Code 3: 112, Form 40 \( \not \Rightarrow \) Form 260 whose summary information is:
    Hypothesis Statement
    Form 40 <p> \(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. <a href="/books/2">Moore, G. [1982]</a>, p 325. </p>

    Conclusion Statement
    Form 260 <p> \(Z(TR\&C,P)\): If \((X,R)\) is a transitive and connected relation in which every partially ordered subset has an upper bound, then \((X,R)\) has a maximal element. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 8005, whose string of implications is:
    256 \(\Rightarrow\) 255 \(\Rightarrow\) 260

The conclusion Form 106 \( \not \Rightarrow \) Form 256 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N33\) Howard/H\.Rubin/J\.Rubin Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all boundedsubsets of \(A\)

Edit | Back