This non-implication,
Form 421 \( \not \Rightarrow \)
Form 15,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 60 | <p> \(C(\infty,WO)\): Every set of non-empty, well orderable sets has a choice function.<br /> <a href="/books/2">Moore, G. [1982]</a>, p 125. </p> |
Conclusion | Statement |
---|---|
Form 296 | <p> <strong>Part-\(\infty\):</strong> Every infinite set is the disjoint union of infinitely many infinite sets. </p> |
The conclusion Form 421 \( \not \Rightarrow \) Form 15 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N3\) Mostowski's Linearly Ordered Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\) |
\(\cal N48\) Pincus' Model XI | \(\cal A=(A,<,C_0,C_1,\dots)\) is called an<em>ordered colored set</em> (OC set) if \(<\) is a linear ordering on \(A\)and the \(C_i\), for \(i\in\omega\) are subsets of \(A\) such that for each\(a\in A\) there is exactly one \(n\in\omega\) such that \(a\in C_n\) |