This non-implication,
Form 106 \( \not \Rightarrow \)
Form 323,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 40 | <p> \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. <a href="/books/2">Moore, G. [1982]</a>, p 325. </p> |
Conclusion | Statement |
---|---|
Form 356 | <p> \(KW(\infty,\aleph_0)\), <strong>The Kinna-Wagner Selection Principle</strong> for a family of denumerable sets: For every set \(M\) of denumerable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). </p> |
The conclusion Form 106 \( \not \Rightarrow \) Form 323 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N33\) Howard/H\.Rubin/J\.Rubin Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all boundedsubsets of \(A\) |