This non-implication, Form 46-K \( \not \Rightarrow \) Form 4, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 10110, whose string of implications is:
    60 \(\Rightarrow\) 46-K
  • A proven non-implication whose code is 3. In this case, it's Code 3: 932, Form 60 \( \not \Rightarrow \) Form 84 whose summary information is:
    Hypothesis Statement
    Form 60 <p> \(C(\infty,WO)\): Every set of non-empty, well orderable sets has a choice function.<br /> <a href="/books/2">Moore, G. [1982]</a>, p 125. </p>

    Conclusion Statement
    Form 84 <p> \(E(II,III)\) (<a href="/articles/Howard-Yorke-1989">Howard/Yorke [1989]</a>): \((\forall x)(x\) is \(T\)-finite  if and only if \(\cal P(x)\) is Dedekind finite). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 96, whose string of implications is:
    4 \(\Rightarrow\) 9 \(\Rightarrow\) 84

The conclusion Form 46-K \( \not \Rightarrow \) Form 4 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)
\(\cal N5\) The Mathias/Pincus Model II (an extension of \(\cal N4\)) \(A\) iscountably infinite; \(\precsim\) and \(\le\) are universal homogeneous partialand linear orderings, respectively, on \(A\), (See <a href="/articles/Jech-1973b">Jech [1973b]</a>p101 for definitions.); \(\cal G\) is the group of all order automorphismson \((A,\precsim,\le)\); and \(S\) is the set of all finite subsets of \(A\)

Edit | Back