This non-implication, Form 47-n \( \not \Rightarrow \) Form 124, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 2463, whose string of implications is:
    121 \(\Rightarrow\) 33-n \(\Rightarrow\) 47-n
  • A proven non-implication whose code is 3. In this case, it's Code 3: 987, Form 121 \( \not \Rightarrow \) Form 124 whose summary information is:
    Hypothesis Statement
    Form 121 <p> \(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function. </p>

    Conclusion Statement
    Form 124 <p> Every operator on a Hilbert space with an amorphous base is the direct sum of a finite matrix and  a  scalar operator.  (A set is <em>amorphous</em> if it is not the union of two disjoint infinite sets.) </p>

  • This non-implication was constructed without the use of this last code 2/1 implication

The conclusion Form 47-n \( \not \Rightarrow \) Form 124 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N24\) Hickman's Model I This model is a variation of \(\cal N2\)

Edit | Back