This non-implication, Form 51 \( \not \Rightarrow \) Form 303, whose code is 4, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 3. In this case, it's Code 3: 956, Form 51 \( \not \Rightarrow \) Form 99 whose summary information is:
    Hypothesis Statement
    Form 51 <p> <strong>Cofinality Principle:</strong> Every linear ordering has a cofinal sub well ordering.  <a href="/articles/Sierpi\'nski-1918">Sierpi\'nski [1918]</a>, p 117. </p>

    Conclusion Statement
    Form 99 <p> <strong>Rado's Selection Lemma:</strong> Let \(\{K(\lambda): \lambda \in\Lambda\}\) be a family  of finite subsets (of \(X\)) and suppose for each finite \(S\subseteq\Lambda\) there is a function \(\gamma(S): S \rightarrow X\) such that \((\forall\lambda\in S)(\gamma(S)(\lambda)\in K(\lambda))\).  Then there is an \(f: \Lambda\rightarrow X\) such that for every finite \(S\subseteq\Lambda\) there is a finite \(T\) such that \(S\subseteq T\subseteq\Lambda\) and such that \(f\) and \(\gamma (T)\) agree on S. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 4062, whose string of implications is:
    303 \(\Rightarrow\) 50 \(\Rightarrow\) 14 \(\Rightarrow\) 99

The conclusion Form 51 \( \not \Rightarrow \) Form 303 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M14\) Morris' Model I This is an extension of Mathias' model, <a href="/models/Mathias-1">\(\cal M3\)</a>

Edit | Back