This non-implication, Form 111 \( \not \Rightarrow \) Form 149, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 2258, whose string of implications is:
    295 \(\Rightarrow\) 30 \(\Rightarrow\) 62 \(\Rightarrow\) 121 \(\Rightarrow\) 122 \(\Rightarrow\) 250 \(\Rightarrow\) 111
  • A proven non-implication whose code is 3. In this case, it's Code 3: 980, Form 295 \( \not \Rightarrow \) Form 118 whose summary information is:
    Hypothesis Statement
    Form 295 <p> <strong>DO:</strong>  Every infinite set has a dense linear ordering. </p>

    Conclusion Statement
    Form 118 <p> Every linearly orderable topological space is normal.  <a href="/books/28">Birkhoff [1967]</a>, p 241. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 5345, whose string of implications is:
    149 \(\Rightarrow\) 67 \(\Rightarrow\) 89 \(\Rightarrow\) 90 \(\Rightarrow\) 118

The conclusion Form 111 \( \not \Rightarrow \) Form 149 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M29\) Pincus' Model II Pincus constructs a generic extension \(M[I]\) of a model \(M\) of \(ZF +\) class choice \(+ GCH\) in which \(I=\bigcup_{n\in\omega}I_n\), \(I_{-1}=2\) and \(I_{n+1}\) is a denumerable set of independent functions from \(\omega\) onto \(I_n\)
\(\cal M44\) Pincus' Model VI This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((B)\)
\(\cal N38\) Howard/Rubin Model I Let \((A,\le)\) be an ordered set of atomswhich is order isomorphic to \({\Bbb Q}^\omega\), the set of all functionsfrom \(\omega\) into \(\Bbb Q\) ordered by the lexicographic ordering
\(\cal N40\) Howard/Rubin Model II A variation of \(\cal N38\)
\(\cal N48\) Pincus' Model XI \(\cal A=(A,<,C_0,C_1,\dots)\) is called an<em>ordered colored set</em> (OC set) if \(<\) is a linear ordering on \(A\)and the \(C_i\), for \(i\in\omega\) are subsets of \(A\) such that for each\(a\in A\) there is exactly one \(n\in\omega\) such that \(a\in C_n\)

Edit | Back