This non-implication, Form 63 \( \not \Rightarrow \) Form 392, whose code is 4, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1337, Form 63 \( \not \Rightarrow \) Form 330 whose summary information is:
    Hypothesis Statement
    Form 63 <p> \(SPI\): Weak ultrafilter principle: Every infinite set has a non-trivial ultrafilter. <br /> <a href="/books/8">Jech [1973b]</a>, p 172 prob 8.5. </p>

    Conclusion Statement
    Form 330 <p> \(MC(WO,WO)\): For every well ordered set \(X\) of well orderable sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\).  (See <a href="/form-classes/howard-rubin-67">Form 67</a>.) </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9517, whose string of implications is:
    392 \(\Rightarrow\) 393 \(\Rightarrow\) 165 \(\Rightarrow\) 330

The conclusion Form 63 \( \not \Rightarrow \) Form 392 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N15\) Brunner/Howard Model I \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)

Edit | Back