This non-implication, Form 122 \( \not \Rightarrow \) Form 239, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 1688, whose string of implications is:
    15 \(\Rightarrow\) 30 \(\Rightarrow\) 62 \(\Rightarrow\) 121 \(\Rightarrow\) 122
  • A proven non-implication whose code is 3. In this case, it's Code 3: 146, Form 15 \( \not \Rightarrow \) Form 79 whose summary information is:
    Hypothesis Statement
    Form 15 <p> \(KW(\infty,\infty)\) (KW), <strong>The Kinna-Wagner Selection Principle:</strong> For every  set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See <a href="/form-classes/howard-rubin-81($n$)">Form 81(\(n\))</a>.   </p>

    Conclusion Statement
    Form 79 <p> \({\Bbb R}\) can be well ordered.  <a href="/articles/hilbert-1900">Hilbert [1900]</a>, p 263. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 7942, whose string of implications is:
    239 \(\Rightarrow\) 427 \(\Rightarrow\) 67 \(\Rightarrow\) 89 \(\Rightarrow\) 90 \(\Rightarrow\) 91 \(\Rightarrow\) 79

The conclusion Form 122 \( \not \Rightarrow \) Form 239 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1\) Cohen's original model Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them

Edit | Back