This non-implication, Form 78 \( \not \Rightarrow \) Form 44, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9788, whose string of implications is:
    43 \(\Rightarrow\) 78
  • A proven non-implication whose code is 3. In this case, it's Code 3: 124, Form 43 \( \not \Rightarrow \) Form 39 whose summary information is:
    Hypothesis Statement
    Form 43 <p> \(DC(\omega)\) (DC), <strong>Principle of Dependent Choices:</strong> If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See <a href="/articles/Tarski-1948">Tarski [1948]</a>, p 96, <a href="/articles/Levy-1964">Levy [1964]</a>, p. 136. </p>

    Conclusion Statement
    Form 39 <p> \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. <a href="/books/2">Moore, G. [1982]</a>, p. 202. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9774, whose string of implications is:
    44 \(\Rightarrow\) 39

The conclusion Form 78 \( \not \Rightarrow \) Form 44 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1(\langle\omega_1\rangle)\) Cohen/Pincus Model Pincus extends the methods of Cohen and adds a generic \(\omega_1\)-sequence, \(\langle I_{\alpha}: \alpha\in\omega_1\rangle\), of denumerable sets, where \(I_0\) is a denumerable set of generic reals, each \(I_{\alpha+1}\) is a generic set of enumerations of \(I_{\alpha}\), and for a limit ordinal \(\lambda\),\(I_{\lambda}\) is a generic set of choice functions for \(\{I_{\alpha}:\alpha \le \lambda\}\)

Edit | Back