This non-implication,
Form 128 \( \not \Rightarrow \)
Form 179-epsilon,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 128 | <p> <strong>Aczel's Realization Principle:</strong> On every infinite set there is a Hausdorff topology with an infinite set of non-isolated points. </p> |
Conclusion | Statement |
---|---|
Form 144 | <p> Every set is almost well orderable. </p> |
The conclusion Form 128 \( \not \Rightarrow \) Form 179-epsilon then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M1\) Cohen's original model | Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them |
\(\cal M40(\kappa)\) Pincus' Model IV | The ground model \(\cal M\), is a model of \(ZF +\) the class form of \(AC\) |
\(\cal N3\) Mostowski's Linearly Ordered Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\) |
\(\cal N38\) Howard/Rubin Model I | Let \((A,\le)\) be an ordered set of atomswhich is order isomorphic to \({\Bbb Q}^\omega\), the set of all functionsfrom \(\omega\) into \(\Bbb Q\) ordered by the lexicographic ordering |
\(\cal N40\) Howard/Rubin Model II | A variation of \(\cal N38\) |