This non-implication, Form 163 \( \not \Rightarrow \) Form 260, whose code is 4, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1328, Form 163 \( \not \Rightarrow \) Form 328 whose summary information is:
    Hypothesis Statement
    Form 163 <p> Every non-well-orderable set has an infinite, Dedekind finite subset. </p>

    Conclusion Statement
    Form 328 <p> \(MC(WO,\infty)\): For  every well ordered set \(X\) such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that and for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). (See <a href="/form-classes/howard-rubin-67">Form 67</a>.) </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 3271, whose string of implications is:
    260 \(\Rightarrow\) 40 \(\Rightarrow\) 328

The conclusion Form 163 \( \not \Rightarrow \) Form 260 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1\) Cohen's original model Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them

Edit | Back