This non-implication, Form 163 \( \not \Rightarrow \) Form 8, whose code is 4, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1004, Form 163 \( \not \Rightarrow \) Form 126 whose summary information is:
    Hypothesis Statement
    Form 163 <p> Every non-well-orderable set has an infinite, Dedekind finite subset. </p>

    Conclusion Statement
    Form 126 <p> \(MC(\aleph_0,\infty)\), <strong>Countable axiom of multiple choice:</strong> For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 10203, whose string of implications is:
    8 \(\Rightarrow\) 126

The conclusion Form 163 \( \not \Rightarrow \) Form 8 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1\) Cohen's original model Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them

Edit | Back