Hypothesis: HR 39:
\(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202.
Conclusion: HR 106:
Baire Category Theorem for Compact Hausdorff Spaces: Every compact Hausdorff space is Baire.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N21(\aleph_{\alpha+1})\) Jensen's Model | We assume \(\aleph_{\alpha+1}\) is a regular cardinal |
Code: 5
Comments: