Hypothesis: HR 40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

Conclusion: HR 193:

\(EFP\ Ab\): Every Abelian group is a homomorphic image of a free projective Abelian group.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N12(\aleph_1)\) A variation of Fraenkel's model, \(\cal N1\) Thecardinality of \(A\) is \(\aleph_1\), \(\cal G\) is the group of allpermutations on \(A\), and \(S\) is the set of all countable subsets of \(A\).In \(\cal N12(\aleph_1)\), every Dedekind finite set is finite (9 is true),but the \(2m=m\) principle (3) is false
\(\cal N12(\aleph_2)\) Another variation of \(\cal N1\) Change "\(\aleph_1\)" to "\(\aleph_2\)" in \(\cal N12(\aleph_1)\) above
\(\cal N33\) Howard/H\.Rubin/J\.Rubin Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all boundedsubsets of \(A\)

Code: 5

Comments:


Edit | Back