Hypothesis: HR 60:
\(C(\infty,WO)\): Every set of non-empty, well orderable sets has a choice function.
Moore, G. [1982], p 125.
Conclusion: HR 97:
Cardinal Representatives: For every set \(A\) there is a function \(c\) with domain \({\cal P}(A)\) such that for all \(x, y\in {\cal P}(A)\), (i) \(c(x) = c(y) \leftrightarrow x\approx y\) and (ii) \(c(x)\approx x\). Jech [1973b] p 154.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N3\) Mostowski's Linearly Ordered Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\) |
Code: 5
Comments: