Hypothesis: HR 63:

\(SPI\): Weak ultrafilter principle: Every infinite set has a non-trivial ultrafilter.
Jech [1973b], p 172 prob 8.5.

Conclusion: HR 379:

\(PKW(\infty,\infty,\infty)\): For every infinite family \(X\) of sets each of which has at least two elements, there is an infinite subfamily \(Y\) of \(X\) and a function \(f\) such that for all \(y\in Y\), \(f(y)\) is a non-empty proper subset of \(y\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\)
\(\cal N29\) Dawson/Howard Model Let \(A=\bigcup\{B_n; n\in\omega\}\) is a disjoint union, where each \(B_n\) is denumerable and ordered like the rationals by \(\le_n\)
\(\cal N49\) De la Cruz/Di Prisco Model Let \(A = \{ a(i,p) : i\in\omega\land p\in {\Bbb Q}/{\Bbb Z} \}\)

Code: 5

Comments:


Edit | Back