Hypothesis: HR 65:
The Krein-Milman Theorem: Let \(K\) be a compact convex set in a locally convex topological vector space \(X\). Then \(K\) has an extreme point. (An extreme point is a point which is not an interior point of any line segment which lies in \(K\).) Rubin, H./Rubin, J. [1985] p. 177.
Conclusion: HR 388:
Every infinite branching poset (a partially ordered set in which each element has at least two lower bounds) has either an infinite chain or an infinite antichain.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N2\) The Second Fraenkel Model | The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \). |
Code: 5
Comments: