Hypothesis: HR 89:
Antichain Principle: Every partially ordered set has a maximal antichain. Jech [1973b], p 133.
Conclusion: HR 126:
\(MC(\aleph_0,\infty)\), Countable axiom of multiple choice: For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N1\) The Basic Fraenkel Model | The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\) |
Code: 5
Comments: