Hypothesis: HR 128:
Aczel's Realization Principle: On every infinite set there is a Hausdorff topology with an infinite set of non-isolated points.
Conclusion: HR 376:
Restricted Kinna Wagner Principle: For every infinite set \(X\) there is an infinite subset \(Y\) of \(X\) and a function \(f\) such that for every \(z\subseteq Y\), if \(|z| \ge 2\) then \(f(z)\) is a non-empty proper subset of \(z\).
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N3\) Mostowski's Linearly Ordered Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\) |
\(\cal N49\) De la Cruz/Di Prisco Model | Let \(A = \{ a(i,p) : i\in\omega\land p\in {\Bbb Q}/{\Bbb Z} \}\) |
Code: 5
Comments: