Hypothesis: HR 134:

If \(X\) is an infinite \(T_1\) space and \(X^{Y}\) is \(T_5\), then \(Y\) is countable. (\(T_5\) is 'hereditarily \(T_4\)'.)

Conclusion: HR 15:

\(KW(\infty,\infty)\) (KW), The Kinna-Wagner Selection Principle: For every  set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 81(\(n\)).  

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N1\) The Basic Fraenkel Model The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\)

Code: 5

Comments:


Edit | Back