Hypothesis: HR 134:
If \(X\) is an infinite \(T_1\) space and \(X^{Y}\) is \(T_5\), then \(Y\) is countable. (\(T_5\) is 'hereditarily \(T_4\)'.)
Conclusion: HR 128:
Aczel's Realization Principle: On every infinite set there is a Hausdorff topology with an infinite set of non-isolated points.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N1\) The Basic Fraenkel Model | The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\) |
Code: 5
Comments: