Hypothesis: HR 144:

Every set is almost well orderable.

Conclusion: HR 131:

\(MC_\omega(\aleph_0,\infty)\): For every denumerable family \(X\) of pairwise disjoint non-empty sets, there is a function \(f\) such that for each \(x\in X\), f(x) is a non-empty countable subset of \(x\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N17\) Brunner/Howard Model II \(A=\{a_{\alpha,i}:\alpha\in\omega_1\,\wedge i\in\omega\}\)
\(\cal N18\) Howard's Model I Let \(B= {B_n: n\in\omega}\) where the \(B_n\)'sare pairwise disjoint and each is countably infinite and let \(A=\bigcup B\)

Code: 5

Comments:


Edit | Back