Hypothesis: HR 144:

Every set is almost well orderable.

Conclusion: HR 163:

Every non-well-orderable set has an infinite, Dedekind finite subset.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N2\) The Second Fraenkel Model The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \).
\(\cal N14\) Morris/Jech Model \(A = \bigcup\{A_{\alpha}: \alpha <\omega_1\}\), where the \(A_{\alpha}\)'s are pairwise disjoint, each iscountably infinite, and each is ordered like the rationals; \(\cal G\) isthe group of all permutations on \(A\) that leave each \(A_{\alpha}\) fixedand preserve the ordering on each \(A_{\alpha}\); and \(S = \{B_{\gamma}:\gamma < \omega_1\}\), where \(B_{\gamma}= \bigcup\{A_{\alpha}: \alpha <\gamma\}\)
\(\cal N15\) Brunner/Howard Model I \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\)
\(\cal N17\) Brunner/Howard Model II \(A=\{a_{\alpha,i}:\alpha\in\omega_1\,\wedge i\in\omega\}\)
\(\cal N18\) Howard's Model I Let \(B= {B_n: n\in\omega}\) where the \(B_n\)'sare pairwise disjoint and each is countably infinite and let \(A=\bigcup B\)
\(\cal N36(\beta)\) Brunner/Howard Model III This model is a modificationof \(\cal N15\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)

Code: 5

Comments:


Edit | Back