Hypothesis: HR 23:

\((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\).

Conclusion: HR 124:

Every operator on a Hilbert space with an amorphous base is the direct sum of a finite matrix and  a  scalar operator.  (A set is amorphous if it is not the union of two disjoint infinite sets.)

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N24\) Hickman's Model I This model is a variation of \(\cal N2\)

Code: 5

Comments:


Edit | Back