Hypothesis: HR 308-p:

If \(p\) is a prime and if \(\{G_y: y\in Y\}\) is a set of finite groups, then the weak direct product \(\prod_{y\in Y}G_y\) has a maximal \(p\)-subgroup.

Conclusion: HR 288-n:

If \(n\in\omega-\{0,1\}\), \(C(\aleph_0,n)\): Every denumerable set of \(n\)-element sets has a choice function.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N22(p)\) Makowski/Wi\'sniewski/Mostowski Model (Where \(p\) is aprime) Let \(A=\bigcup\{A_i: i\in\omega\}\) where The \(A_i\)'s are pairwisedisjoint and each has cardinality \(p\)

Code: 5

Comments:


Edit | Back