Hypothesis: HR 316:

If a linearly ordered set \((A,\le)\) has the fixed point property then \((A,\le)\) is complete. (\((A,\le)\)  has the fixed point property if every function \(f:A\to A\) satisfying \((x\le y \Rightarrow f(x)\le f(y))\) has a fixed point, and (\((A,\le)\) is complete if every subset of \(A\) has a least upper bound.)

Conclusion: HR 293:

For all sets \(x\) and \(y\), if \(x\) can be linearly ordered and there is a mapping of \(x\) onto \(y\), then \(y\) can be linearly ordered.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N37\) A variation of Blass' model, \(\cal N28\) Let \(A=\{a_{i,j}:i\in\omega, j\in\Bbb Z\}\)

Code: 5

Comments:


Edit | Back