Hypothesis: HR 379:
\(PKW(\infty,\infty,\infty)\): For every infinite family \(X\) of sets each of which has at least two elements, there is an infinite subfamily \(Y\) of \(X\) and a function \(f\) such that for all \(y\in Y\), \(f(y)\) is a non-empty proper subset of \(y\).
Conclusion: HR 53:
For all infinite cardinals \(m\), \(m^2\le 2^m\). Mathias [1979], prob 1336.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N1\) The Basic Fraenkel Model | The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\) |
Code: 5
Comments: