Hypothesis: HR 379:

\(PKW(\infty,\infty,\infty)\): For every infinite family \(X\) of sets each of which has at least two elements, there is an infinite subfamily \(Y\) of \(X\) and a function \(f\) such that for all \(y\in Y\), \(f(y)\) is a non-empty proper subset of \(y\).

Conclusion: HR 200:

For all infinite \(x\), \(|2^{x}| = |x!|\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N1\) The Basic Fraenkel Model The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\)
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)

Code: 5

Comments:


Edit | Back