Hypothesis: HR 24:

\(C(\aleph_0,2^{(2^{\aleph_0})})\): Every denumerable collection of non-empty sets each with power \(2^{(2^{\aleph_{0}})}\) has a choice function.

Conclusion: HR 124:

Every operator on a Hilbert space with an amorphous base is the direct sum of a finite matrix and  a  scalar operator.  (A set is amorphous if it is not the union of two disjoint infinite sets.)

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N24\) Hickman's Model I This model is a variation of \(\cal N2\)

Code: 5

Comments:


Edit | Back