This non-implication,
Form 165 \( \not \Rightarrow \)
Form 129,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 165 | <p> \(C(WO,WO)\): Every well ordered family of non-empty, well orderable sets has a choice function. </p> |
Conclusion | Statement |
---|---|
Form 167 | <p> \(PKW(\aleph_{0},\ge 2,\infty)\), <strong>Partial Kinna-Wagner Principle:</strong> For every denumerable family \(F\) such that for all \(x\in F\), \(|x|\ge 2\), there is an infinite subset \(H\subseteq F\) and a function \(f\) such that for all \(x\in H\), \(\emptyset\neq f(x) \subsetneq x\). </p> |
The conclusion Form 165 \( \not \Rightarrow \) Form 129 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) | The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\) |
\(\cal N29\) Dawson/Howard Model | Let \(A=\bigcup\{B_n; n\in\omega\}\) is a disjoint union, where each \(B_n\) is denumerable and ordered like the rationals by \(\le_n\) |