This non-implication, Form 191 \( \not \Rightarrow \) Form 373-n, whose code is 6, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 5. In this case, it's Code 3: 522, Form 191 \( \not \Rightarrow \) Form 373-n whose summary information is:
    Hypothesis Statement
    Form 191 <p> \(SVC\): There is a set \(S\) such that for every set \(a\), there is an ordinal \(\alpha\) and a function from \(S\times\alpha\) onto \(a\). </p>

    Conclusion Statement
    Form 373-n <p> (For \(n\in\omega\), \(n\ge 2\).) \(PC(\aleph_0,n,\infty)\): Every denumerable set of \(n\)-element sets has an infinite subset with a choice function. </p>

  • This non-implication was constructed without the use of this last code 2/1 implication

The conclusion Form 191 \( \not \Rightarrow \) Form 373-n then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N2(n)\) A generalization of \(\cal N2\) This is a generalization of\(\cal N2\) in which there is a denumerable set of \(n\) element sets for\(n\in\omega - \{0,1\}\)
\(\cal N22(p)\) Makowski/Wi\'sniewski/Mostowski Model (Where \(p\) is aprime) Let \(A=\bigcup\{A_i: i\in\omega\}\) where The \(A_i\)'s are pairwisedisjoint and each has cardinality \(p\)

Edit | Back