This non-implication,
Form 0 \( \not \Rightarrow \)
Form 118,
whose code is 6,
is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 381 | <p> <strong>DUM</strong>: The disjoint union of metrizable spaces is metrizable. </p> |
Conclusion | Statement |
---|---|
Form 118 | <p> Every linearly orderable topological space is normal. <a href="/books/28">Birkhoff [1967]</a>, p 241. </p> |
The conclusion Form 0 \( \not \Rightarrow \) Form 118 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N3\) Mostowski's Linearly Ordered Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\) |