This non-implication, Form 249 \( \not \Rightarrow \) Form 112, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 1900, whose string of implications is:
    23 \(\Rightarrow\) 27 \(\Rightarrow\) 31 \(\Rightarrow\) 32 \(\Rightarrow\) 10 \(\Rightarrow\) 249
  • A proven non-implication whose code is 5. In this case, it's Code 3: 42, Form 23 \( \not \Rightarrow \) Form 84 whose summary information is:
    Hypothesis Statement
    Form 23 <p> \((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\). </p>

    Conclusion Statement
    Form 84 <p> \(E(II,III)\) (<a href="/articles/Howard-Yorke-1989">Howard/Yorke [1989]</a>): \((\forall x)(x\) is \(T\)-finite  if and only if \(\cal P(x)\) is Dedekind finite). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 6521, whose string of implications is:
    112 \(\Rightarrow\) 90 \(\Rightarrow\) 51 \(\Rightarrow\) 77 \(\Rightarrow\) 185 \(\Rightarrow\) 84

The conclusion Form 249 \( \not \Rightarrow \) Form 112 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)
\(\cal N5\) The Mathias/Pincus Model II (an extension of \(\cal N4\)) \(A\) iscountably infinite; \(\precsim\) and \(\le\) are universal homogeneous partialand linear orderings, respectively, on \(A\), (See <a href="/articles/Jech-1973b">Jech [1973b]</a>p101 for definitions.); \(\cal G\) is the group of all order automorphismson \((A,\precsim,\le)\); and \(S\) is the set of all finite subsets of \(A\)

Edit | Back