This non-implication, Form 269 \( \not \Rightarrow \) Form 398, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 4031, whose string of implications is:
    317 \(\Rightarrow\) 14 \(\Rightarrow\) 49 \(\Rightarrow\) 30 \(\Rightarrow\) 62 \(\Rightarrow\) 61 \(\Rightarrow\) 88 \(\Rightarrow\) 268 \(\Rightarrow\) 269
  • A proven non-implication whose code is 5. In this case, it's Code 3: 639, Form 317 \( \not \Rightarrow \) Form 355 whose summary information is:
    Hypothesis Statement
    Form 317 <p> <strong>Weak Sikorski Theorem:</strong>  If \(B\) is a complete, well orderable Boolean algebra and \(f\) is a homomorphism of the Boolean algebra \(A'\) into \(B\) where \(A'\) is a subalgebra of the Boolean algebra \(A\), then \(f\) can be extended to a homomorphism of \(A\) into \(B\).

    Conclusion Statement
    Form 355 <p> \(KW(\aleph_0,\infty)\), <strong>The Kinna-Wagner Selection Principle</strong> for a denumerable family of sets: For every denumerable set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 8937, whose string of implications is:
    398 \(\Rightarrow\) 322 \(\Rightarrow\) 355

The conclusion Form 269 \( \not \Rightarrow \) Form 398 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)

Edit | Back