This non-implication,
Form 280 \( \not \Rightarrow \)
Form 232,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 63 | <p> \(SPI\): Weak ultrafilter principle: Every infinite set has a non-trivial ultrafilter. <br /> <a href="/books/8">Jech [1973b]</a>, p 172 prob 8.5. </p> |
Conclusion | Statement |
---|---|
Form 232 | <p> Every metric space \((X,d)\) has a \(\sigma\)-point finite base. </p> |
The conclusion Form 280 \( \not \Rightarrow \) Form 232 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N53\) Good/Tree/Watson Model I | Let \(A=\bigcup \{Q_n:\ n\in\omega\}\), where \(Q_n=\{a_{n,q}:q\in \Bbb{Q}\}\) |