This non-implication,
Form 296 \( \not \Rightarrow \)
Form 15,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 3 | \(2m = m\): For all infinite cardinals \(m\), \(2m = m\). |
Conclusion | Statement |
---|---|
Form 15 | <p> \(KW(\infty,\infty)\) (KW), <strong>The Kinna-Wagner Selection Principle:</strong> For every set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See <a href="/form-classes/howard-rubin-81($n$)">Form 81(\(n\))</a>. </p> |
The conclusion Form 296 \( \not \Rightarrow \) Form 15 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N9\) Halpern/Howard Model | \(A\) is a set of atoms with the structureof the set \( \{s : s:\omega\longrightarrow\omega \wedge (\exists n)(\forall j > n)(s_j = 0)\}\) |