This non-implication,
Form 309 \( \not \Rightarrow \)
Form 14,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 309 | <p> <strong>The Banach-Tarski Paradox:</strong> There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\). </p> |
Conclusion | Statement |
---|---|
Form 69 | <p> Every field has an algebraic closure. <a href="/books/8">Jech [1973b]</a>, p 13. <p> |
The conclusion Form 309 \( \not \Rightarrow \) Form 14 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N1\) The Basic Fraenkel Model | The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\) |