This non-implication,
Form 92 \( \not \Rightarrow \)
Form 322,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 67 | <p> \(MC(\infty,\infty)\) \((MC)\), <strong>The Axiom of Multiple Choice:</strong> For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). </p> |
Conclusion | Statement |
---|---|
Form 18 | <p> \(PUT(\aleph_{0},2,\aleph_{0})\): The union of a denumerable family of pairwise disjoint pairs has a denumerable subset. </p> |
The conclusion Form 92 \( \not \Rightarrow \) Form 322 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N2\) The Second Fraenkel Model | The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \). |