This non-implication, Form 324 \( \not \Rightarrow \) Form 153, whose code is 6, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9967, whose string of implications is:
    322 \(\Rightarrow\) 324
  • A proven non-implication whose code is 5. In this case, it's Code 3: 641, Form 322 \( \not \Rightarrow \) Form 10 whose summary information is:
    Hypothesis Statement
    Form 322 <p> \(KW(WO,\infty)\), <strong>The Kinna-Wagner Selection Principle for a well ordered family of sets:</strong> For every  well ordered set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\).  (See <a href="/form-classes/howard-rubin-15">Form 15</a>). </p>

    Conclusion Statement
    Form 10 <p> \(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9673, whose string of implications is:
    153 \(\Rightarrow\) 10

The conclusion Form 324 \( \not \Rightarrow \) Form 153 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N50(E)\) Brunner's Model III \(E\) is a finite set of prime numbers.For each \(p\in E\) and \(n\in\omega\), let \(A_{p,n}\) be a set of atoms ofcardinality \(p^n\)

Edit | Back