This non-implication,
Form 325 \( \not \Rightarrow \)
Form 4,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 325 | <p> <strong>Ramsey's Theorem II:</strong> \(\forall n,m\in\omega\), if A is an infinite set and the family of all \(m\) element subsets of \(A\) is partitioned into \(n\) sets \(S_{j}, 1\le j\le n\), then there is an infinite subset \(B\subseteq A\) such that all \(m\) element subsets of \(B\) belong to the same \(S_{j}\). (Also, see <a href="/form-classes/howard-rubin-17">Form 17</a>.) </p> |
Conclusion | Statement |
---|---|
Form 84 | <p> \(E(II,III)\) (<a href="/articles/Howard-Yorke-1989">Howard/Yorke [1989]</a>): \((\forall x)(x\) is \(T\)-finite if and only if \(\cal P(x)\) is Dedekind finite). </p> |
The conclusion Form 325 \( \not \Rightarrow \) Form 4 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N3\) Mostowski's Linearly Ordered Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\) |