This non-implication,
Form 338 \( \not \Rightarrow \)
Form 322,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 133 | <p> Every set is either well orderable or has an infinite amorphous subset. </p> |
Conclusion | Statement |
---|---|
Form 322 | <p> \(KW(WO,\infty)\), <strong>The Kinna-Wagner Selection Principle for a well ordered family of sets:</strong> For every well ordered set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See <a href="/form-classes/howard-rubin-15">Form 15</a>). </p> |
The conclusion Form 338 \( \not \Rightarrow \) Form 322 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) | The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\) |