This non-implication, Form 94 \( \not \Rightarrow \) Form 328, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 5983, whose string of implications is:
    91 \(\Rightarrow\) 79 \(\Rightarrow\) 94
  • A proven non-implication whose code is 5. In this case, it's Code 3: 234, Form 91 \( \not \Rightarrow \) Form 330 whose summary information is:
    Hypothesis Statement
    Form 91 <p> \(PW\):  The power set of a well ordered set can be well ordered. </p>

    Conclusion Statement
    Form 330 <p> \(MC(WO,WO)\): For every well ordered set \(X\) of well orderable sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\).  (See <a href="/form-classes/howard-rubin-67">Form 67</a>.) </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9977, whose string of implications is:
    328 \(\Rightarrow\) 330

The conclusion Form 94 \( \not \Rightarrow \) Form 328 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N15\) Brunner/Howard Model I \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)

Edit | Back